ADA PINPOINT TOPIC PACKS

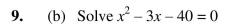
- (1) Solving Quadratics by Factorisation (3 Qns)
- (2) Estimating Roots from Quadratic Graphs (3 Qns)
- (3) Solving Quadratics Using the Formula (3 Qns)
- (4) Harder Solving Quadratics with the Formula (2 Qns)
- (5) Factorising Quadratics with a coefficient greater than

20_to_100_Percent_Pinpoint_AI_Pack

Time Allocation = 39mins, Max = 34 Marks

Calculated Grade Boundaries:

Grade	Marks
3+	2
4-	4 6
4	6
4+	8
5-	9
5	11
5+	13
6-	15
6	17
6+	18
7-	20
7	22
3+ 4- 4 4+ 5- 5 5+ 6- 6 6+ 7- 7	22 24
8-	26
8	27


8+	29
9-	31
9	33
9+	34

Question 1 (AO1): 73% of students got this right (3 marks)

4. (c) Solve $x^2 - 3x - 10 = 0$

(3)

Question 2 (AO1): (No Calc) 61% of students got this right (3 marks)

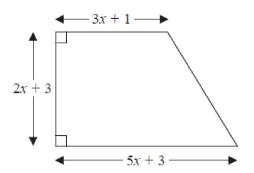
(3)

(Total 5 marks)

Question 3 (AO2): 50% of students got this right (6 marks)

10. The diagram shows a trapezium.

All the measurements are in centimetres. The area of the trapezium is 46 cm².


(a) Show that $x^2 + 2x - 5 = 0$

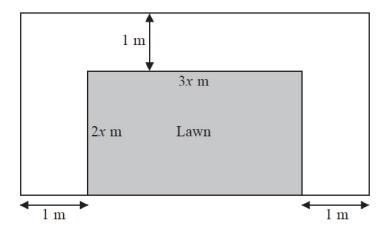
(3)

(b) Solve the equation $x^2 + 2x - 5 = 0$ Give your solutions correct to 2 decimal places.

Question 4 (AO1): 34% of students got this right (6 marks)

14. The diagram shows a trapezium.

All the measurements are in centimetres. The area of the trapezium is 46 cm^2 .


(a) Show that $x^2 + 2x - 5 = 0$

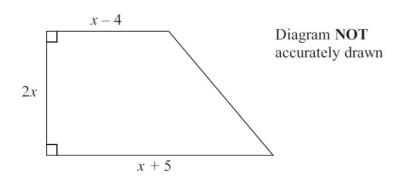
(3)

(b) Solve the equation $x^2 + 2x - 5 = 0$ Give your solutions correct to 2 decimal places.

Question 5 (AO2): 29% of students got this right (5 marks)

9. A rectangular lawn has a length of 3x metres and a width of 2x metres. The lawn has a path of width 1 metre on three of its sides.

The total area of the lawn and the path is $100 \ m^2$


(b) Calculate the area of the lawn. Show clear algebraic working.

•	•	•	•		•	•	•	•	•	 •	•	•	•		•	•	•	•	•		•	•	•		•	•	•	•	1	n	1	2
																													(5)

(Total 7 marks)

Question 6 (AO3): 15% of students got this right (5 marks)

22. The diagram shows a trapezium.

All the measurements are in centimetres.

The area of the trapezium is 351 cm².

(a) Show that $2x^2 + x - 351 = 0$

(b) Work out the value of x.

(2)

(3)

(2)

Question 7 (AO3): (No Calc) 8% of students got this right (6 marks)

21. The length of a rectangle is the same as the length of each side of a square.

The length of the rectangle is 4 cm more than 3 times the width of the rectangle.

The area of the square is 66 cm² more than the area of the rectangle.

Find the length and the width of the rectangle.

You must show all your working.

Answers to Qn 1 (AO1): 73% of students got this right

4.	(c)	(x - 5)(x + 2) = 0	5 and -2	3	M1 for $(x \pm 5)(x \pm 2)$	
					A1 for $(x-5)(x+2) = 0$	
					B1 ft (dep on M1) for $x = 5$ and -2	

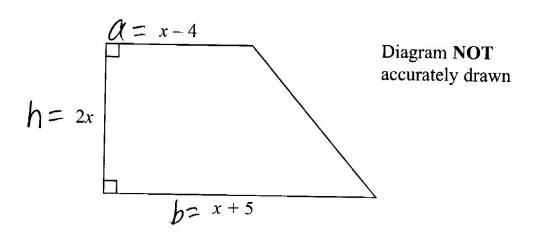
Answers to Qn 2 (AO1): (No Calc) 61% of students got this right

Ques		Working	Answer	Mark	Notes
9	(b)	(x-8)(x+5)	8, -5	3	M2 for $(x-8)(x+5)$
					(M1 for $(x \pm 8)(x \pm 5)$
					A1 cao 8 and -5
		OR			OR
		$(2) + (2)^2 + 1 + 40$			M1 for correct substitution in formula of
		$\frac{-(-3) \pm \sqrt{(-3)^2 - 4 \times 1 \times -40}}{2 \times 1}$			$a = 1, b = \pm 3$ and $c = \pm 40$
		2 / 1			
					M1 for reduction to $\frac{3\pm\sqrt{169}}{2}$
		$3+\sqrt{169}$ 3+13			_
		$\frac{3 \pm \sqrt{169}}{2} = \frac{3 \pm 13}{2}$			A1 cao 8 and –5
		Question Order Cra	ated hy Dinn	nint I eer	nings Automatic Differentiation Algorithmn
		QUESTION OTAEL CIE	асы ыу гіпр	UIIII LEAI	inigo Automatic Dinerentiation Algoritinin

Answers to Qn 3 (AO2): 50% of students got this right

10.	(a)	$\frac{1}{2}(3x+1+5x+3)(2x+3) = \frac{1}{2}(8x+4)(2x+3)$ So, $(4x+2)(2x+3)-46=0$ $8x^2+16x+6-46=0$ $8x^2+16x-40=0$ $x^2+2x-5=0$	Proof	3	M1for correct method to find area of trapezium M1 (dep) for expanding all brackets to get a correct expression for the area C1 for complete correct proof
	(b)	$x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-5)}}{2 \times 1}$ $= \frac{-2 \pm \sqrt{24}}{2}$ OR	1.45, -3.45	3	M1 for $\frac{-2 \pm \sqrt{2^2 - 4(1)(-5)}}{2 \times 1}$ condone one sign error in substitution M1 for $\frac{-2 \pm \sqrt{24}}{2}$ A1 for 1.44 to 1.45 (and -3.44 to -3.45)
		$(x+1)^2 - 1^2 - 5$ = $(x+1)^2 - 6$ $x+1 = \pm \sqrt{6}$			OR M1 for $(x + 1)^2 - 1^2 - 5$ (or equivalent) M1 for $x + 1 = (\pm)\sqrt{6}$ A1 for 1.44 to 1.45 (and -3.44 to -3.45)

Answers to Qn 4 (AO1): 34% of students got this right


14.	(a)	$\frac{1}{2}(3x+1+5x+3)(2x+3) =$	Proof	3	M1for correct method to find area of trapezium
17.	(a)	$\frac{1}{2}(8x+4)(2x+3)$	11001		1911101 correct method to find area of trapezium
		/2 (OA T 4)(2A T 3)			M1 (dep) for expanding all brackets to get a correct expression
		So (4m + 2)(2m + 2) 46 = 0			
		So, $(4x + 2)(2x + 3) - 46 = 0$			for the area
		$8x^2 + 16x + 6 - 46 = 0$			C1 for complete correct proof
		0.4 1 10.4 1 0 40 = 0			C1 for complete correct proof
		$8x^2 + 16x - 40 = 0$			
		$x^2 + 2x - 5 = 0$			
	(b)	$x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-5)}}{2 \times 1}$	1.45, -3.45	3	M1 for $\frac{-2 \pm \sqrt{2^2 - 4(1)(-5)}}{2 \times 1}$ condone one sign error in
	(0)	$x = 2 \times 1$			2×1
		$= \frac{-2 \pm \sqrt{24}}{}$			substitution
		=			
					M1for $\frac{-2 \pm \sqrt{24}}{2}$
					$M1 \text{for} \frac{1}{2}$
					A1for 1.44 to 1.45 (and -3.44 to -3.45)
		OR			
		2 2			OR
		$(x+1)^2 - 1^2 - 5$ = $(x+1)^2 - 6$			
		$= (x+1)^2 - 6$			M1 for $(x + 1)^2 - 1^2 - 5$ (or equivalent)
					1,40
		$x+1=\pm\sqrt{6}$			M1 for $x + 1 = (\pm)\sqrt{6}$
					A1 for 1.44 to 1.45 (and -3.44 to -3.45)
					AT 101 1.44 to 1.45 (and -5.44 to -5.45)

Answers to Qn 5 (AO2): 29% of students got this right

Que	stion	Working	Answer	Mark	Notes
9.	(b)	Working $(3x + 14)(2x - 7) (= 0)$ $x = 3.5$ $(Area =) 6 \times "3.5"^{2}$ or $(3 \times "3.5) \times (2 \times "3.5")$	73.5	Mark 5	Notes $M2 or (x =) \frac{-7 \pm \sqrt{49} + 2352}{12} or $ $(x =) \frac{-7 \pm \sqrt{2401}}{12}$ If not M2 then M1 for $(3x \pm 14)(2x \pm 7)$ $or (x =) \frac{-7 \pm \sqrt{7^2 - 4 \times 6 \times -98}}{2 \times 6}$ $condone + in place of \pm and 1 sign$ error. A1 Dependent on at least M1 Ignore negative root. M1ft Dependent on at least M1 and $x > 0$ A1 cao Dependent on first M1
		Question Order	Created by Pi	npoint L	earnings Automatic Differentiation Algorithmn

Answers to Qn 6 (AO3): 15% of students got this right

22 The diagram shows a trapezium.

All the measurements are in centimetres.

The area of the trapezium is 351 cm².

(a) Show that
$$2x^2 + x - 351 = 0$$

$$A = \frac{1}{2}(a+b)h$$

$$= \frac{1}{2}(x-4+x+5) \times 2x$$

$$= (2x+1) \times x$$

$$= 2x^2 + x$$

$$2x^2 + x = 351$$

$$2x^2 + x - 351 = 0$$

(2)

(b) Work out the value of x.

$$2x^2 + x - 351 = 0$$

$$2x^2 - 26x + 27x - 351 = 0$$

$$2x(x-13)+27(x-13)=0$$

$$(2x+27)(x-13)=0$$

$$x = 13$$
 $x = -\frac{27}{2}$ x can't be negative

Question Order Created by Pinpoint Learnings Automatic Differentiation Algorithmn

(Total for Ouestion 22 is 5 marks)

Answers to Qn 7 (AO3): (No Calc) 8% of students got this right

21	width = $1\frac{2}{}$	P1	start to process e.g. establishes that $x^2 = xy + 66$
	$ \begin{cases} 3 \\ \text{length} = 9 \end{cases} $	P1	process to form equation in one variable, e.g. substitute in: e.g. $(3y + 4)^2 = y(3y + 4) + 66$ or $x^2 = 66 + (x(x - 4))/3$
		P1	process to arrive at equation to be solved $3y^2 + 10y - 25 = 0$ or $x^2 + 2x - 99 = 0$ oe
		P1	process to solve, e.g. $(3y - 5)(y + 5) = 0$ or $(x - 9)(x + 11) = 0$
		P1	selection of $y = 5/3$ or $x = 9$ as only solution, and subs to find other variable
		A1	$y \text{ (width)} = 1\frac{2}{3} \text{ (cm)} \text{ and } x \text{ (length)} = 9 \text{ (cm)}$